想成为真正的数据科学家,除了资历你还需要这4个技能

2018-01-18 08:09

导语:研究数据是过程,在数据帮助下做出好的决策才是目的


科学家-2.jpg


能简洁地表达自己的发现的价值


一个数据科学家如果想要成长,他对自己的要求就不能只是做一个合格的程序员 & 统计员。他必须学会如何成为一个沟通者,必须掌握简洁地表达自己的发现的能力,以及能够告诉自己的上级应该如何处理这些信息。


给自己的总监以及其它管理层成员展示研究过程中收集到的所有的的图表、所有的数据和所有的技术信息以表明自己工作得非常努力,这听上去还不赖。尤其是,数据科学领域内有时候要花几个月的时间才能在某一个问题上做出有价值的进展(背后自然是有原因的)。不过,在一切结束之后,总监们并不需要过多的信息。


知道重点的信息,以及知道基于这些重点信息应该做什么,对于总监们来说就足够了。你的总监可能还有另外 8 支团队要管,那你跟他讲很多 ROC、讲很多为什么选了这个算法而没有选另一个,就不是很有帮助。大多数的时候你都会发现总监其实只需要 2 到 3 个简单的要点汇报。有时候甚至简单的「是」、「不是」都比「可能…… 在某些条件下…… 这个那个…… 第一种可能性下有这个危险,第二种可能性下有另一些危险」更有用。一个有经验的数据科学家会知道如何仔细打磨自己的洞见、如何浓缩执行步骤,以此来给自己的上级提供真正的帮助。如果你的上级想要知道更多的信息,他会开口问的(并且一个好的数据科学家总是答得上来的)。说到底,管理层们不喜欢陷在一堆不能帮助他们做出更好的决定的多余信息里面。


科学家-3.jpg


了解自己公司的业务


当数据科学家换工作的时候,没能在上班第一天就完全了解新公司的所有情况是完全正常的。除了数据源、代码库以及其它一些公司特有的系统之外,还有很多别的东西需要学习。他们需要了解接下来要打交道的每天的运营数据,也需要知道公司现在面临的问题。不过,一个有经验的数据科学家还需要能够快速理解公司的业务。


千万不要全神贯注磨炼自己的技术能力,然后对公司业务只是一知半解。要学习如何和别的团队协同工作、参与到公司的项目中去、给自己一些听取别人意见的机会。数据科学家完全有可能要连续参与各种不同类型的、面对各种不同问题的项目,他们需要能够快速适应。


刚入行的开发者往往会关注磨练自己的技术能力多于关心自己公司的业务。和很多其它行业一样,重复性的繁重工作都是在较低的级别上进行的(在这里就比如敲代码、数据清洗等等),这就让执行这些任务的人没有时间深入琢磨他们自己应该如何帮助改善公司的业务。然而,在数据科学家工作的头几年中,了解公司的业务应当是一个重要成长阶段,这能确保他们建立起多种多样的技术能力。有经验一些的数据科学家就需要多花点注意力考虑自己的项目的「为什么」。如果一个管理者不挑战自己的有经验的数据科学家团队、不让他们成长并学习公司的业务,那么不能很好成长的责任管理者也要承担起来。每年或者每隔几个月,管理者们都要让经验的数据科学家们面对新的挑战,确保他们在成长。不然公司的业务就明显错过了最大的投入产出比。


管理自己的上级


在任何行业中管理自己的上级都不是一件容易的事情。在科技行业中,根据上级主管的技术背景不同,这件事有时候会显得非常困难。关注业务的管理者可能没有什么经验带领技术团队,对于有经验的数据科学家来说在这种时候有能力管理自己的上级就至关重要。善于管理上级的数据科学家能理解别人。管理上级需要数据科学家(或者公司中任何一个在乎这件事的人)花一些时间理解上级的需求。值得考虑的不仅仅是公司的需求。你的上司对你有什么需求、对自己又有什么需求,一旦你了解了这些,你就明白了是什么在驱动他们。这样,在你的上司开口讲他的需求之前你就知道应该期待什么。这能帮助你们建立信任,也能让你的管理者和总监们给你分配更多的资源和注意力。这个世界上不是只有你一个人需要成长,你的上级也想要成长的!作为有经验的(不管哪个级别的)员工,你很清楚帮助别人成长、帮助别人达成目标的时候你自己也有收获。


总结


企业对数据科学家的期待不仅仅是创造算法以及管理大量的数据而已。有经验的数据科学家的价值也不仅仅体现在他们的技术能力上,还体现在他们磨练出的软技能上。数据科学家找到的信息和算法要帮助推动高层管理者做出决策。总监和副总裁们可能管理着价值上千万的团队、资源、设备、项目以及公司里其它各种各样的东西,而数据科学家的所有输出都应当是他们可以理解的。这就意味着,为了让数据科学家成长、为了给帮助公司发展业务,他们也就需要知道哪些东西是对公司业务有价值的。